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In the following working paper we prove that the state variable of our CA verify a suitable type of 

RDE. The notion of derivative of stochastic process we will use is the forward mean derivative 

( )
0

: lim t t t
t

t

y y
y t E

t

+∆

∆ → +

− 
′ =  

∆ 
 

where ( ) ( ):t tE E− = −S  and ( ):t s s t
yσ

≤
 =  S  is the sigma algebra generated by present and past 

states of y (it is well known that tS  can be interpreted as the set of all the information expressible 

using the process ( )s s t
y

≤
 and hence this is a possible way to consider memory effect). For this 

reason every probability that appears in this document is to be meant as :
t t

P P= −  S . 

In this proof we used a rigorous theory of actual infinitesimals (see [Gio 04]) to simplify the 

calculations; this theory permits to write exact equalities instead of approximations, e.g. 

( ) ( ) ( )f x dx f x dx f x′+ = + ⋅  if dx  is a first order nilpotent infinitesimal, that is 0dx ≠  but 

( )
2

0dx = , or ( ) ( )d
x dx

x
f t t f x dx

+

= ⋅∫  for the same type of infinitesimal. 

 

The RDE for the (conditional) mean value (first moment) 
 

First of all we start remembering the synchronous version of the algorithm used for the CA (due to 

the well know relations between Poisson and exponential distribution, the synchronous and the 

asynchronous version of the algorithm are mathematically (not numerically) equivalent). For more 

details about the algorithm see [Van et al 04].  

We proceed cell by cell and at a fixed time t . To simplify the notations sometimes we suppress the 

dependence of some variables by the time t or by the cell c . 

 

1. The initial step 0t =  is given by a deterministic global configuration of the system. 

2. First of all we have to calculate, using the present value D

te E∈ = R of the state variables of 

the cell and its neighbourhoods, the total intensity :c c
A

α
α

λ λ
∈

= ∑  of the sum process in the 

cell c , where we have used the simplified notation ( ):c cα αλ λ= . The sum process can be 

roughly described as “an event of type α , for some α , happens in the cell c ”. 

 

3. Using the total intensity, the number of events k , of some type ,α  is extracted using a 

Poisson distribution  
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Here ( )c cN N t=  is the random variable which counts the number of events happened in the 

cell. 
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4. Having k , using a multinomial distribution we can calculate the number of events Nα  of 

type α  which happen in the cell for each α . 

So if 
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Note that this is a general formula, but concretely ( ) { }0,1N tα ∈  because of the urban 

meaning of each α -transformation: e.g. if α = “Construction of a residential building on a 

free terrain” then only one builder has got the property of the terrain and so only one α -

event may at least happen. Anyway the following proof is written using the general formula 

(1.1) and so it does not depend on this peculiar characteristic of our model. 

 

5. At this step of the algorithm we need to extract, using their probability density defined in 

our context using fuzzy logic methods, the value of the stochastic goods 
( )n απ ∈R  

associated to each α -transformation. This step is formalized by the following equality   
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where 
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∈ ℝB  is a measurable set, ( ) ( ) ( ) ( )( )1: ,...,
n

t t tα α α
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=Π Π Π  is the vector 

random variable describing the goods produced by the α -transformation and 
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is the above mentioned probability density. This step has to be performed for each one of 

the kα  events and for every Aα ∈ . 

 

6. If 
( )1 ,...,

n
α α

α
π π  are the values of αΠ  extracted at the previous step, then we update each 

state variable of the cell c  using a relation like the (3.3.3) of [Van et al 04]. We remember 

here the equality (3.3.3) in a more general form  
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here 0kα =  if no α -transformation happen in the cell (and hence ( ) ( )11 11, ,v c t t v c t+ ∆ = ), 

and 1kα =  if an α -transformation happened in the cell ( kα  are the values of the random 

variable Nα  introduced at step 3). 

 

This completes the algorithm. To prove the first RDE we start writing the equality (1.3) (which is 

written using the extracted values απ  of the random variable αΠ  and kα  of the variable Nα ) as 
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This can be thought as the definition of the stochastic process ( )11 ,v c t  at the next time step. To 

simplify a little bit the notation we call 

 



( ) ( )11, : : ,tS c t S v c t= = , 

and 
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α αγ γ= Π − Π , (1.5) 

 

so that now (1.4) can be written as 
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Note that because of the simple affine functions ( )1 11,...,α α αγ γ γ=  (see equation (3.3.2) in [Van et al 

04]) from (1.5) we can simply obtain the probability density of Sα  conditioned to a given value π  

of αΠ  and of ,cN Nα  from the densities of  αΠ . We will indicate the density of Sα  with 

( )( )11
; , ,

A
s k kα α

β π
∈

5
. 

Taking the (conditional expected) value of both terms of (1.6) we obtain 
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Note that we cannot use the linearity of tE  for the second sum because ( )N tα  is a random 

variable. 

Now we calculate the expected value of this sum as: 
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(so now α  is a fixed valued between 7 and 10), where 
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is the set of all the values of the variables cN , Nβ  for Aβ ∈  and αΠ . But at the step 4 of the 

algorithm we have seen that 
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so 
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 In the following with the notation ( ); yβ −  (note the use of ; instead of , ) we indicate the conditional probability 

density of the variable X  conditioned by Y y= . 
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where we have taken in (1.9) as B  the infinitesimal interval ( , dB π π π= +  so that 
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Now take t∆  a first order infinitesimal, that is 0t∆ ≠  but ( )
2

0t∆ = . For the well known properties 

of the Poisson distribution
6
 it follows that 
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analogously we can proceed if 1
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where we used both (1.8) and (1.10) and where we did not write the sum because ( ) 1N N tα α= = . 

But (1.1) at the step 3 of the algorithm says 
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In our case it becomes 

 

[ ] [ ]1 1t c c t c c c cP N N p P N p t tα α α αλ λ= = = ⋅ = = ⋅ ⋅ ∆ = ⋅ ∆   (1.13) 

 

where we used (1.11) and the definition of cpα  given at the first step of the algorithm. Substituting 

in (1.12) we obtain 
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Now we can use the probability density of Sα  
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where ( ) ( )11 11; : ;1,1,s sβ π β π= , see (1.5) and the following notes. So that 
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Substituting in (1.14) and in (1.7) we obtain the final result: 
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That is (making explicit both the dependence from time t  and from the present value of the global 

configuration D

te E∈ = R )  
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This is the first RDE for the conditional expected value of the variable tS  in the given cell c . Note 

that the randomness is introduced by the global variable te . 

Equation (1.16) cannot be solved alone, neither by numerical methods. In fact thinking e.g. to the 

Euler method we can read it as 
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So that if we start at 0t =  from a deterministic configuration 0e , then (1.17) gives the value of 

( ) ( )0 t tE S E S∆ ∆= ; but this is only a very partial information about the distribution of tS∆ , and 

hence we cannot re-start the procedure even at the first step. This is the fundamental reason for 

which we need the RDE for all the moment of tS  at every time t . 

 

The RDE for the other moment 
 

Here we only sketch the final results. The first idea is to generalize the context (so as to obtain 

simplified notations). Generally speaking we have in fact a step relation (see (1.4)) of type 

 

, , ,
ttt tS f S t t e+∆  = ∆    (1.18) 

 

To obtain the other equations for the moments it suffices to start from the k -th central moment 
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and substituting t tS +∆  and ( )t t tSE +∆  with the relations (1.18) and (1.17) respectively it suffices to 

perform some algebraic calculation using as t∆  a first order infinitesimal, so that ( ) 0
k

t∆ = . 

The final equations for 1k >  are 
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ktk
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S
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where 2 f∂  is the partial derivative of f  w.r.t. the second variable t∆ . 

It is interesting to note that assuming f  analytical, Markov processes and a first order infinitesimal 

standard deviation of tS  we can prove that the system of moment equations reduces to the ODE 

about the expected value ( )tSE  of the state variable deduced from the ME. 

Now the above sketched Euler method can be intuitively completed: starting from an initial 

condition 0e  (and hence 0S ) and an infinitesimal time interval dt , using the moment equations we 

can obtain the value of each moment ( )k t dtSm +  at t dt+ . If the moment problem can be uniquely 

solved, then we obtain the whole distribution of t dtS + ; using this distribution we can generate the 

next step t d tS +  and restart the procedure. 

Even if we finally obtain an infinite system of differential equations, in our case it is natural to 

make assumptions on f  such that the solution tS  of the RDE is bounded (every state variable is 

either a volume or a surface). Then it is possible to study the corresponding “truncated moment 

problem”, keeping the amount of order up to a finite k  and look for the convergence of the Euler 

procedure. 
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